Galois extensions in which every element with regular trace is a normal basis element

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rings in which elements are the sum of an‎ ‎idempotent and a regular element

Let R be an associative ring with unity. An element a in R is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von Neumann) element in R. If every element of R is r-clean, then R is called an r-clean ring. In this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. Further we prove that if 0 and 1 are the only idempotents...

متن کامل

Modules for which every non-cosingular submodule is a summand

‎A module $M$ is lifting if and only if $M$ is amply supplemented and‎ ‎every coclosed submodule of $M$ is a direct summand‎. ‎In this paper‎, ‎we are‎ ‎interested in a generalization of lifting modules by removing the condition‎"‎amply supplemented‎" ‎and just focus on modules such that every non-cosingular‎ ‎submodule of them is a summand‎. ‎We call these modules NS‎. ‎We investigate some gen...

متن کامل

Right Self-injective Rings in Which Every Element Is a Sum of Two Units

In 1954 Zelinsky [16] proved that every element in the ring of linear transformations of a vector space V over a division ring D is a sum of two units unless dim V = 1 and D = Z2. Because EndD(V ) is a (von-Neumann) regular ring, Zelinsky’s result generated quite a bit of interest in regular rings that have the property that every element is a sum of (two) units. Clearly, a ring R, having Z2 as...

متن کامل

rings in which elements are the sum of an‎ ‎idempotent and a regular element

let r be an associative ring with unity. an element a in r is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von neumann) element in r. if every element of r is r-clean, then r is called an r-clean ring. in this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. further we prove that if 0 and 1 are the only idempotents...

متن کامل

rings in which elements are the sum of an‎ ‎idempotent and a regular element

let r be an associative ring with unity. an element a in r is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von neumann) element in r. if every element of r is r-clean, then r is called an r-clean ring. in this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. further we prove that if 0 and 1 are the only idempotents...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1958

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1958-0095859-x